

PR-003-1164001

Seat No.

M. Sc. (Sem. IV) (CBCS) Examination

August - 2020

Mathematics: CMT-4001

(Linear Algebra)

Faculty Code: 003

Subject Code: 1164001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Attempt all the questions.

- (2) There are 5 questions.
- (3) Figures to the right indicate full marks.

1 Answer any seven:

14

- (1) If a linear transformation *T* is left invertible then show that *T* is invertible.
- (2) Let $T: P_2[x] \to P_3[x]$ be a linear transformation defined by $T(p(x)) = \int p(x) dx$. Find matrix of T in the standard bases.
- (3) Suppose that T is a nilpotent linear transformation and $\alpha \in F$ is non-zero then prove that $\alpha I + T$ is regular.
- (4) For any $A \in M_n(\mathbb{C})$ show that tr $(AA^*) \ge 0$.
- (5) Prove or disprove:
 - (1) tr(AB) = tr(A)tr(B)
 - (2) $\det(A+B) = \det(A) + \det(B).$
- (6) Let V be an inner product space. Then show that $(S+T)^* = S^* + T^*$ and $(ST)^* = S^*T^*$.
- (7) Characterise eigen values of a unitary transformation.
- (8) Define: Bilinear form and non-degenerate bilinear form.

[Contd....

- (9) Prove that any orthonormal subset of an inner product space is linearly independent.
- (10) Suppose that f is a non-zero skew-symmetric bilinear form and $v, w \in V$ be such that f(v, w) = 1. Then show that v and w are linearly independent.

2 Attempt any two:

14

- (1) Prove that p(x) is a minimal polynomial for T over F if and only if whenever $h(x) \in F[x]$ such that h(T) = 0, p(x) divides h(x).
- (2) State and prove:
 - (1) Jacobson's lemma
 - (2) Polarization identity.
- (3) Suppose T is nilpotent with index of nilpotence n_1 and let $v \in V$ be such that $T^{n_1-1}(v) \neq 0$. Then show that, $V_1 = L(\{v, Tv, ..., T^{n_1-1}v\})$ is a subspace of V with dimension n_1 and it is invariant under T. Also find the matrix of $T \mid v_1$.

3 Answer the following:

14

- (1) Prove that : A linear transformation T is invertible if and only if the constant term in the minimal polynomial for T is not 0.
- (2) Prove that T is unitary if and only if T maps an orthonormal basis of V to an orthonormal basis of V.

OR

3 Answer the following:

14

- (1) Prove that T is regular if and only if $\ker(T) = \{0\}$.
- (2) State and prove : Cramer's rule.

4 Answer the following:

- (1) Suppose V_1 and V_2 are invariant subspaces of V under T such that $V = V_1 \oplus V_2$. If $p_1(x), p_2(x) \in F[x]$ are minimal polynomial for $T \mid v_1$ and $T \mid v_2$ respectively. Then prove that minimal polynomial for T is the LCM of $p_1(x)$ and $p_2(x)$.
- (2) Let $A, B \in M_n(F)$. Then prove that, $\det(AB) = \det(A)\det(B)$.

5 Attempt any **two**:

14

14

- (1) Prove that λ is characteristic root of T if and only if λ is a root of minimal polynomial for T.
- (2) Suppose that V is a cyclic F[x]—module and $p(x) \in F[x]$ is the minimal polynomial for T. Then prove that there exists a basis of V over F such that matrix of T is companion matrix of p(x).
- (3) Show that any eigen value of a Hermitian matrix over \mathbb{C} is real. Using this result deduce that if the matrix is of the form AA^* for some $A \in M_n(\mathbb{C})$, then its eigen value is non-negative.
- (4) Let f be a bilinear form then prove that f is symmetric if and only if $[f]_B$ is symmetric for any basis B of V over F.